Finite Element Pointwise Results on Convex Polyhedral Domains

نویسندگان

  • Dmitriy Leykekhman
  • Boris Vexler
چکیده

Abstract. The main goal of the paper is to establish that the L1 norm of jumps of the normal derivative across element boundaries and the L1 norm of the Laplacian of a piecewise polynomial finite element function can be controlled by corresponding weighted discrete H2 norm on convex polyhedral domains. In the finite element literature such results are only available for piecewise linear elements in two dimensions and the extension to convex polyhedral domains is rather technical. As a consequence of this result, we establish almost pointwise stability of the Ritz projection and the discrete resolvent estimate in L∞ norm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise a Posteriori Error Estimates for the Stokes Equations in Polyhedral Domains

Abstract. We derive pointwise a posteriori residual-based error estimates for finite element solutions to the Stokes equations in polyhedral domains. The estimates relies on the regularity of the of Stokes equations and provide an upper bound for the pointwise error in the velocity field on polyhedral domains. Whereas the estimates provide upper bounds for the pointwise error in the gradient of...

متن کامل

Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra

The aim of the paper is to show the stability of the finite element solution for the Stokes system in W 1 ∞ norm on general convex polyhedral domain. In contrast to previously known results, W 2 r regularity for r > 3, which does not hold for a general convex polyhedral domains, is not required. The argument uses recently available sharp Hölder pointwise estimates of the corresponding Green’s m...

متن کامل

Hölder estimates for Green's functions on convex polyhedral domains and their applications to finite element methods

A model second-order elliptic equation on a general convex polyhedral domain in three dimensions is considered. The aim of this paper is twofold: First sharp Hölder estimates for the corresponding Green’s function are obtained. As an applications of these estimates to finite element methods, we show the best approximation property of the error in W 1 ∞. In contrast to previously known results, ...

متن کامل

Pointwise a Posteriori Error Control for Discontinuous Galerkin Methods for Elliptic Problems

An a posteriori error bound for the maximum (pointwise) error for the interior penalty discontinuous Galerkin method for a standard elliptic model problem on polyhedral domains is presented. The computational domain is not required to be Lipschitz, thus allowing for domains with cracks and other irregular polyhedral domains. The proof is based on direct use of Green’s functions and varies subst...

متن کامل

Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems

Two types of pointwise a posteriori error estimates are presented for gradients of finite element approximations of second-order quasilinear elliptic Dirichlet boundary value problems over convex polyhedral domains Ω in space dimension n ≥ 2. We first give a residual estimator which is equivalent to ‖∇(u − uh)‖L∞(Ω) up to higher-order terms. The second type of residual estimator is designed to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016